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Abstract

One of the most significant problems in public health is ensuring the safety of drugs by understanding
and being able to predict their adverse effects or ADEs (Adverse Drug Events). Motivated by increases in
hospitalizations and deaths due to ADEs and the poor performance of traditional methods and with the
growth of drug and biological data repositories, researchers have turned to machine learning and data science
methods to aid in the prediction of ADEs. In this research, we utilize network metrics such as similarity
and centrality from a novel drug-drug-ADE network along with machine learning techniques to predict
associations between drugs and heart-related ADEs. An extensive collection of annotated MEDLINE
biomedical articles was used to construct a drug-ADE network, and the network was further equipped with
information about drugs’ target proteins. We created a novel drug-drug-ADE network and trained accurate
machine learning classifiers to predict drug-ADE links based on network metrics. Our top model was a
bagged decision tree that identified drug-ADE associations with an overall accuracy of 90.6%.

1 Introduction

Our project investigates drug-protein-ADE (Adverse
Drug Event) relations to identify similar drugs based
on the proteins they target and how they are asso-
ciated with the drugs’ reported ADEs. We aim to
explore newer drug compared to existing drugs with
well-known ADEs by using target protein common-
alities to predict likely new drug-ADE relationships.
We hope our method can aid ADE detection in the
clinical trial stage or before, thus averting severe and
often fatal adverse effects that are experienced by
users when drugs are approved prematurely.

Accurately identifying adverse drug events early is
an increasing concern in the medical industry. Med-
ical errors have been the cause behind the death
and injury of over one million patients in the US
alone. ADEs contribute about a fifth of that [1].
Even though there are several surveillance techniques
in practice to monitor ADEs, studies indicate that
the best review technique is chart monitoring [1],
which is time and resource expensive. Hence, sev-
eral automated learning techniques have been em-
ployed to tackle this issue. The most impactful re-
search in this field has been done by Cami et al. [2],
where pharmaco-safety networks (PPNs) have been

employed. In PPNs, known drug-ADE relationships
on specific drugs are used to predict likely unknown
ADEs. The crux of this predictive approach relies on
leveraging existing, contextual drug safety informa-
tion, potentially identifying certain ADEs very early.

We’ll investigate drug-target-ADE relations to
identify target proteins associated with the reported
ADEs. One popular approach [3] uses ADE vectors
and computes a cosine correlation coefficient to differ-
ent drugs. Another popular approach is the chemoge-
nomic approach [4] which computes drug-drug simi-
larity by evaluating chemical structural similarities
between drugs. In our project, we have adopted
a mixed network science and machine learning ap-
proach to the problem where drug-drug similarity is
calculated by comparing the target proteins and net-
work metrics are used to train a classifier for drug-
ADE links.

2 Background

2.1 Computational Medicine

In recent years, with the explosive growth of biomed-
ical data and the rapid development of medical and
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computer technology, the field of digital health was
ushered in the era of big data [5]. In this context,
computational medicine began to appear as a new
subject. Based on big biomedical data and computer
technology, computational medicine is an interdisci-
plinary subject combining medicine, computer sci-
ence, biology, mathematics, etc [6]. One of the pre-
vailing direction in this area is computational phar-
macology; three specific aims within the realm of
computational pharmacology are prediction of drug-
target interactions, prediction or explanation of po-
tential side effects or adverse drug reactions, and
methods for drug re-purposing, i.e. finding new uses
for existing drugs [7].

2.1.1 ADEs

The drugs in adverse drug events are defined by the
FDA as ”A substance intended for use in the diag-
nosis, cure, mitigation, treatment, or prevention of
disease”. Therefore, in this study, we are looking at
medications prescribed by doctors and not drugs such
as cocaine or heroin. Adverse drug events or ADEs
are any unexpected harm caused by the normal use of
medication at the normal dosage. It therefore does
not cover those injuries caused by inappropriate or
off-label usages of a medication [8]. ADEs cause hos-
pitalizations and mortality in substantial numbers,
and their incidence is on the rise [9][10][11], which
encourages researchers to develop new detection and
prediction methods.
ADE studies can be classified into 3 distinct cat-

egories, namely, detection, prediction, and under-
standing [12]. Detection studies are the largest group
of ADE research works focused on finding new and
undetected ADE signals (ie, associations, not neces-
sarily causal) between the existent drugs (already in
the market) and adverse events [13]. In ADE predic-
tion studies, instead of detecting signals for the exis-
tent drugs using collected data from their past usage
experiences, the focus is on creating signals for the
new drugs before they cause any ADEs to patients.
The strategy in this group of studies is mainly to find
similarities between the existent and the new drugs
and thereby to predict ADEs for the new drugs given
the already known relationships between their similar

existent drugs with the corresponding ADEs [14][15].
We will be working in this second category of stud-
ies. The last group of ADE studies in our taxonomy
are those focusing on verifying ADE signals and un-
derstanding the mechanism through which the drug
causes the ADE [16].

2.2 Network Analysis

2.2.1 Network Metrics

If we know a network’s structure, we can calculate a
variety of useful quantities or measures that capture
particular features of the network topology [17].

The centrality of a node in a graph defines how
important a node in the graph is. There are a wide
variety of mathematical measures of vertex central-
ity that focus on different concepts and definitions of
what it means to be central in a network.

Consider network N = (V,E,w) with adjacency
matrix A, where Aij = 1 if there is an edge between
nodes i and j in V ; and Aij = 0 if there does not
exist an edge between nodes vi and vj .:

Definition 1 (Degree Centrality) Degree cen-
trality is the most straightforward network centrality
measure. It only considers the degree of a node,
which is the number of nodes that a given node is
connected to [18].

cd(vi) = ki ∀vi ∈ V (1)

Degree centrality measures the extent of influence
that a node has on the network. The more neigh-
bors a node has, the more critical it is. Although the
concept of degree centrality is straightforward, some-
times we need to find some central nodes with more
complicated structures.

Definition 2 (Closeness Centrality) The close-
ness centrality of a node measures the centrality of
a node based on how close it is to other nodes in the
network. The smaller the total distance of a node
to other nodes, the higher its closeness is. The dis-
tance between two nodes is defined as the shortest path
length between them. We calculate the closeness cen-
trality measure for a node by inverting the sum of the
distances from it to other nodes in the network [18].
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Similarity metrics compare how similar or equiv-
alent two nodes (or more complex structures within
the graph) are. It is a tool that can help predict the
association between two nodes.

Definition 3 (Jaccard Similarity) Jaccard coef-
ficient of nodes vi, vj ∈ V is defined as

J(vi, vj) =
|Γ(vi) ∩ Γ(vj)|
|Γ(vi) ∪ Γ(vj)|

(2)

Other network metrics, the Adamic-Adar Coeffi-
cient and the Preferential Attachment Coefficient,
which we chose to use in this project, are proposed
to be helpful for link prediction.
In 2003, Lada A. Adamic, Orkut Buyukkokten, and
Eytan Adar introduced a measure which predicts the
association between two nodes based on their similar
neighbours [19]:

Definition 4 (Adamic–Adar Coefficient) For
each two nodes vi, vj ∈ V define the Adamic–Adar
Coefficient:

A(vi, vj) =
∑

u∈Γ(vi)∩Γ(vj)

1

ln|Γ(u)|
(3)

where Γ(w) is the set of neighbours of w ∈ V .

The definition is based on the concept that com-
mon elements with substantial neighborhoods are
less significant when predicting a connection between
two nodes compared with elements shared between a
small number of nodes.

In 1999, Albert L. Barabasi and Reka Albert intro-
duce the preferential attachment score [20] which in-
dicates new vertices added to the graph are attached
preferentially to high degree vertices.

Definition 5 (Preferential Attachment) For
each two nodes vi, vj ∈ V define the preferential
attachment score:

P (vi, vj) = |Γ(vi)||Γ(vj)| (4)

where Γ(w) is the set of neighbours of w ∈ V [21].

2.2.2 Machine Learning Techniques for Pre-
diction

In machine learning, classification refers to a pre-
dictive modeling problem where a class label is
predicted for a given example of input data. There
are various algorithms for classification; here, we
review some of them and apply them to our problem.

Logistic Regression can be viewed as arising
from a Bernoulli model. Given a set of predictors,
xn, we wish to determine the probability of a binary
out- come Yn. We define a probability model:

P(Yn = 1|xn) := σ(wxn)

with corresponding likelihood function:

P[y|xn, n = 1, ..., N) =
∏
n

σ(wxn)
Yn(1−σ(wxn))

1−Yn

where the logistic function

σ(θ) =
1

1 + exp(−θ)

is a continuous increasing function mapping any real
valued θ into the interval (0, 1), and thus is suitable
for representing the probability of a Bernoulli trial
outcome [22].

Näıve Bayes classifies using Bayes’ Theorem
of probability.

Theorem 1 For events A and B, if the probability
of B is non zero, P[B] ̸= 0 then we have:

P(A|B) =
P[B|A]P[A]

P[B]

where P(.|.) is a conditional probability.

Näıve Bayes’ classifiers fall under the category of
simple probabilistic classifiers based on the concept
of Bayes’ Theorem having strong independence
assumptions among the features. It is particularly
suited when the dimensional of the inputs is high
[23][24].
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K-nearest Neighbours is a non-parametric
method used for classification and regression. Given
N training vectors, the KNN algorithm identifies the
k-nearest neighbors of an unknown feature vector
whose class is to be identified.

Support Vector Machines SVM works on
the concept of margin calculation. In this algorithm,
each data item is plotted as a point in n-dimensional
space (where n is the number of features we have
in our data set). The value of each feature is the
value of the corresponding coordinate. It classifies
the data into different classes by finding a line
(hyperplane) that separates the training data sets
into classes. It works by maximizing the distances
between the nearest data point (in both classes) and
the hyperplane that we can call as margin [25].

Decision Trees is a technique for approximat-
ing discrete-valued target function, which represents
the learned function in the form of a decision tree
[26]. A decision tree classifies instances by sorting
them from root to leaf nodes based on feature
values. Each node represents some decision (test
condition) on the instance’s attribute, whereas every
branch represents a possible value for that feature.
While using a decision tree, the focus is on deciding
which attribute is the best classifier at each node
level. Statistical measures like information gain,
Gini index, Chi-square, and entropy are calculated
for each node to calculate the worth of that node [26].

Gradient Boosted Trees is a technique where an
ensemble of weak learners is used to improve the
performance of a machine-learning model. The weak
learners are usually decision trees—combined, their
output results in better models [27].

Bagged Decision Trees is a technique in which
an ensemble of weak learners trained on randomly
selected subsets of the training set is aggregated to
create one prediction. Aggregating predictions of
different models can reduce variance and overfitting
[28].

Random Forest uses a bagging approach to

create a bunch of decision trees with a random
subset of data. The output of all decision trees in the
random forest is combined to make the final decision
trees. There are two stages in Random Forest
Algorithm, one is to create a random forest, and
the other is to predict the random forest classifier
created in the first stage [25].

3 Materials and Methods

3.1 Materials

3.1.1 ADE Datasets

We used SIDER, Side Effect Resource, an open
dataset that provides information on marketed
medicines and their recorded adverse drug reactions.
The database has been scraped from public docu-
mentation and drug labels. It includes information
for each drug such as side effects, the side effect in
MedDRA preferred terms, side effect frequency, and
indications (why that medicine would be prescribed).
MedDRA is the Medical Dictionary for Regulatory
Activities. It is an internationally used set of terms
for medical conditions, medicines, and devices cre-
ated to help standardize medical information. The
indications for each medicine were scraped from the
indications and usage sections of the labels.

3.1.2 Protein Datasets

DrugBank Online is a freely accessible online
database that contains information on drugs and
drug targets. It contains detailed drug data and drug
target information. It currently contains 14,975 drug
entries with 5,290 non-redundant protein sequences
linked to these entries. We queried DrugBank Online
to create our drug-protein dataset.

3.1.3 MEDLINE Datasets

MEDLINE is a database from the National Library
of Medicine. It contains more than 12 million biblio-
graphic citations from thousands of biomedical jour-
nals. We used PubMed to query the year drug-ADE
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associations were first found. We used this informa-
tion to separate our training and validation datasets.

3.1.4 Identifying Training and Validation
Datasets

Using the MEDLINE database, we used drug-ADE
pairs found between 2000-2014 as our training set and
pairs found between 2015-2022 as our test set. We
had about 3600 training pairs and 490 test pairs. We
were thus able to attempt to predict ADEs of newer
drugs with our ML models and check our predictions
with the published drug-ADE pairs discovered after
2015.

3.2 Methods

3.2.1 Network Construction

Our network was a drug-drug-ADE network. We
chose to filter our original drug-ADE dataset from
SIDER to only the top 10 most common heart-
related ADEs. These included: Cardiac Disor-
der, Myocardial Infarction, Tachycardia, Supraven-
tricaular Tachycardia, Myocardial Ischaemia, Brady-
cardia, Cardiac Failure, Cardiac Arrest, Ventricular
Tachycardia, and Cardiac Failure Congestive. We
also chose to only look at proteins that were targeted
by at least 5 drugs; this allowed us to filter out in-
dividual drugs that were not particularly similar to
any other drugs in the dataset. We ended up with
409 drugs, 10 ADEs, and 9,106 links between drugs
and ADEs.
Our final network was similar to a bipartite graph

with drugs on one side and heart-related ADEs on
the other except we also had links between drugs.
We added a link between two drugs if they shared at
least one target protein, and a link between a drug
and an ADE if there existed a mention of that drug
causing the particular ADE. It was an unweighted,
undirected graph.
From our drug-drug-ADE network, we projected

just the drug-drug part of the network to a new graph
to examine the drug-drug relations closer. We found
the drugs to be clustered in 5 groups based on their
protein targets and chose to do the rest of the analysis
on the largest group that contained most of the drugs.

3.2.2 Network Metrics

For every possible drug-ADE pair (409 drugs × 10
heart-related ADEs), we calculated 5 network met-
rics. We calculated two centrality metrics: degree
centrality and closeness centrality. For the degree
centrality, we summarize the degree centrality of the
drug in the pair and the degree centrality of the ADE
in the pair. We did the same for the centrality of
closeness. Additionally, we calculated 3 similarity
metrics: Jaccard coefficient, Adamic adar coefficient,
and preferential attachment coefficient for each drug-
ADE pair. We used these based on other literature
that proposed that they may be helpful in link pre-
diction [12].

3.2.3 Machine Learning Models

We used our similarity metrics to train machine learn-
ing models. Our input X for each classifier was each
drug-ADE’s five network metrics, and our input y for
each classifier was a binary variable, either 1 or 0, in-
dicating whether or not there was a link between that
drug-ADE pair. Refer to Figure 5 as an example of
the dataset we used for our classifier.

Using our network metrics, we trained eight clas-
sifiers: logistic regression, Naive Bayes, KNN, SVM,
decision tree, bagged decision tree, boosted decision
tree, and a random forest on our training set of drug-
ADE pairs found before 2015 and any possible drug-
ADE pairs for drugs approved before 2015. We then
validated our models by predicting drug-ADE links
for drug-ADE links discovered post-2015.

4 Results

In this section, we will illustrate our results in some
graphs and tables. First, there are samples of our
graphs, shown in Figures 1, 2, and 3. Due to the
large size of the network (409 drugs, 10 ADEs, and
9,106 links), it is hard to visualize and comprehend
the complete network. Therefore, we created a sub-
section of the graph from 10 drugs and 8 heart-related
ADEs to demonstrate the network (Figure 2).
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Figure 1: The Drug-Drug Network with 18 drugs
(nodes) based on common target Protein

Figure 1 shows the Drug-Drug Network with 18
drugs (nodes). The nodes are drugs and there ex-
ists a link between two drugs if they share at least
one common protein target based on the DrugBank
dataset.

Figure 2: The Drug-Drug-ADE Network with 10
drugs and 10 ADEs (nodes)

Figure 2 shows the Drug-Drug-ADE network. The
blue nodes on the left side are drugs and the green
nodes on the right side are ADEs. Links between
drugs show an association between two drugs if there

exists at least one common protein target and links
between drugs and ADEs show the drug-ADE asso-
ciations found from the SIDER dataset.

Figure 3: The Drug-Drug network based on com-
mon target Protein with five biggest groups

Figure 3 is a schematic picture of drug-drug net-
work construct based on common protein targets.
The graph consists of five distinct groups once we fil-
tered out proteins that were targeted by less than five
drugs. After looking at this graph, we chose to only
consider drugs in the largest group for our classifier
to ensure they would all have some similar targets.

Figure 4: The frequencies of ADEs in each group of
drugs in figure 3

Figure 4 shows the frequencies of ADEs in each
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group of drugs in figure 3. Some of the ADEs are
present in every group like Bradycardia; some are
highly prevalent, e.g. Tachycardia. However, some
are only seen in a few groups, such as pericarditis
which we can see only in Group 0 and Group 4.

Figure 5: The slice of data with calculated network
metrics for classification

In figure 5, you can see a slice of data used for the
classification model. The first two columns indicate
drugs and ADEs. A drug-ADE pair is classified as
zero or one in the third column depending if there was
a published mention of that specific drug causing that
ADE. The other columns show the network metrics
calculated; these were the classification features.

Figure 6: The summary of the performance of the
different classification algorithms.

According to their training and test accuracy and
training run time, Figure 6 shows the performance of
our eight different classification algorithms. Overall,
the decision tree algorithms have better results than
the others; the best being the bagged decision tree.

5 Discussion

We noted that by considering drug-target interac-
tions with additional network variables, we were able
to predict drug-ADE links post-2015 with a maxi-
mum accuracy of 90.6%. Our results are more accu-
rate compared to previous literature, [12]. One pos-

sible reason may be that we focused on only the top
ten most common heart-related ADEs, whereas the
previous work looked at the top eight most common
and high-risk ADEs. As a result, there may be a cor-
relation between our heart-related ADEs, which can
lead to more accurate prediction results. Further-
more, using more recent and accurate datasets helped
us improve our model. Some prediction errors can be
attributed to more complex drug-drug relations; for
example, two or more drugs may still interact while
targeting different proteins. More intensive and com-
plex algorithms, such as deep learning methods, may
be better at modeling drug-drug inter-effects, thus
improving drug-ADE prediction.

Our main insights from this research were more
global than local. We created a novel drug-drug-
ADE network and trained accurate machine learning
classifiers to predict drug-ADE links based on net-
work metrics. Our network and these models can be
used in the pharma-industry to predict heart-related
ADEs on newly-approved drugs.

6 Conclusion

In our project, we predict ADEs by constructing an
unweighted drug-drug-ADE networks using biomed-
ical citations and drug target proteins information.
We employed network metrics in addition to sev-
eral classical machine learning techniques to pre-
dict associations. Our results suggest that using
centrality-based metrics (degree centrality and close-
ness centrality), similarity-based metrics (Jaccard co-
efficient), and link prediction metrics (Adamic-Adar
coefficient and preferential attachment coefficient) to-
gether can be beneficial for such classifying tasks.
Additionally, all the information used to train our
prediction models were historical drug-ADE associa-
tions and drug-target proteins.

6.1 Future Work

One way to improve our results may be to increase
the size of our training dataset. In the future, we
would like to extend our dataset by combining infor-
mation from multiple public databases such as AERS,
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SIDER, JAPIC, etc., as well as scraping public fo-
rums like Facebook and Twitter. This may help im-
prove the accuracy of ADE prediction. Additionally,
considerations around ethnicity, gender, medical his-
tory, economic background, etc., may be crucial fac-
tors in improving the accuracy of drug-ADE predic-
tions. Considering higher-order drug-drug and drug-
ADE interactions may help improve our models. We
would also like to extend our network by incorpo-
rating genomic data and trying different subsets of
ADEs such as respiratiory-related ADEs and psycho-
logical ADEs.
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